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ABSTRACT. In demography finite-state-space time-homogeneous Markov processes are often
used, explicitly or implicitly, to model the movement of individuals between various states (e.g.
studies of marital formation and dissolution or of interregional migration). However the fact that
data are often only available at certain levels of aggregation, preventing a simple and exact
statistical analysis, has caused much confusion and has even impeded the adoption of probabilis-
tic modelling and statistical analysis. In this paper we consider one specific form of aggregate
data and propose a new method of estimation of the underlying Markov process. Some prelimin-
ary results on the properties of this methed are given and some open problems are discussed.
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1. Introduction

In demography finite-state-space time-homogeneous Markov processes are often used,
explicitly or implicitly, to model the movement of individuals between various states (e.g.
studies of marital formation and dissolution or of interregional migration). However the fact
that data are often only available at certain levels of aggregation, preventing a simple and
exact statistical analysis, has caused much confusion and has even impeded the adoption of
probabilistic modelling and statistical analysis. In this paper we consider one specific form of
aggregate data and propose a new method of estimation of the underlying Markov process.
Some preliminary results on the properties of this method are given.

In this field the so-called “occurrence-exposure rate” plays a central role: this is the ratio of
the number of events of a certain type, the occurrences (typically the number of direct moves
from one particular state to another), to the total amount of time individuals have been at risk
to this event (i.e. have occupied the first state), the exposure. The occurrence-exposure rate
can be considered as an estimate of the corresponding Markov-process intensity. However
data are often only available on the occurrences, aggregated over time and individuals, while
the exposures are not recorded. One is usually interested in estimating the Markov process
model as a means for computing the net transfers for each pair of states: the number of
individuals who start in one state and finish in the other.

Let us start by summarizing some of the well-known properties of a homogeneous Markov
process X=(X,: =0) with finite state space {1, 2,..., p} for some positive integer p (random
variables are printed in bold type; the same symbol in ordinary (italic) type denotes a possible
realization of the corresponding random variable). An early reference where much of this
material can be found is Albert (1962). This process is described by an initial distribution &,
considered as a row-vector with non-negative elements u;, i=1,..., p, Zu;=1, and a set of
intensities O, considered as a p X p matrix with non-negative off-diagonal elements g;;, i#j, and
diagonal elements g;=-—2,9;<0. For isj one interprets g; by the relation: g;-h =?
(X,.»=j| X,=i) for small h>0 . The process X can be constructed by first selecting an initial
state according to the probabilities u, i.e. #;=2(Xo=1), staying in that state an exponentially
distributed length of time with mean —1/g; then jumping to a new state, say j, with
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probabilities ;= —q;;/q; etc. If g;=0 state i is absorbing; i.e. once state i is entered it is never
left again. By convention one chooses to let the paths of X be right-continuous; i.e. X,=state at
time t+. We define X,_ =X, Since the state-space is finite it is easy to check that this procedure
really does define a process (X, :t=0) ;i.e. the number of jumps in any bounded time-interval is
almost surely bounded. We shall only be concerned with the time interval te[0, 1]. The process
X is Markov with transition matrix P,=exp (Qt) where (P,);= *(X,..=j|X,=i). Consequently
the marginal distribution of X, is given by the vector of probabilities # P, In particular we
define v to be the distribution at time 1 or the final distribution; i.e.

v=pel. 1)

Also we let I denote the row-vector of expected lengths of time spent in each state during the
time interval [0, 1],

1
0
where I{. . .} denotes the indicator random variable of the specified event. So we have

1 1
l=[ uP, ds=j ue® ds. 2)
0 0

Letting 1 denote a row-vector of I's, and T denote transpose, we obviously have
I17=1. 3

Also we have
1
10= f 4e® Q ds=[ue@)=p(e@~I)=v—p. (4)
0

Note that Q17=0" so that rank (Q)<p-1. If rank (Q)=p—1 and moreover 17 is linearly
independent of the columns of Q (i.e. rank (Q: 1T)=p) then for given x and Q the equations in
I

1
l=f ue? ds )
0

and
10=u(e?-1), 17=1 (6)

are equivalent. (In practice one uses (6) to compute / for given  and Q.) A necessary and
sufficient condition for rank (Q: 1T)=p is that there exists at least one state to which all states
have access (see Appendix I). This is also equivalent to the condition rank (Q)=p—1. More
complex situations can be handled by appropriate decompositions of the state space, cf. Funck
Jensen (1982b) and Appendix III. (We say that i has access to  if i=j or if there exist states iy, i,
so ooy i With ip=i, §,=j and q;, >0 for m=1,..., k. States i and j communicate if each has
access to the other.)

Finally we denote by N the matrix with elements N;=expected number of jumps from state i
to state j during the time interval [0, 1](i#)), Ny;=—Z2;.N;. So Ny=ENy)=E(Z g0 I{X,-=i,
X,=j}) for i#j. One can show (e.g. by using Aalen (1978), Example 3 and the fact that the
expectation of a martingale is constant) that for i#j, N;=I,q;, which we can rewrite (taking
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account of the definition of the diagonal elements of Q and N) as
N=diag (1)Q @)

where “diag” of a vector denotes the diagonal matrix with the corresponding elements of the
vector on its diagonal. Note that by the identity (sometimes called the accounting equation)

X, =i} =l{Xo=i}+ >, > X, =), X=i}= >, > UX, =i X,=j}

JEE o JFEt
we obtain on taking expectations the so-called flow equation
v=u+1N ®)

The statistical problem we will address is the following. For m=1,..., n let X"=(X[":
te[0, 1]) be processes such that conditional on X§=X7, m=1,..., n, X™ are independent
homogeneous Markov processes on {1,..., p} with the same intensity matrix Q and with
initial distributions point mass on X§, m=1,. .., n. Thus we consider n individuals or particles
who, starting from (and conditional on) some arbitrary initial configuration on {1,..., p},
move independently from state tostatein {1,. .., p} during the time interval [0, 1] according to
the description given above. Now define the random variables

Np= DX =i, XP=j} i#f
m,t

=total number of moves from i to j during [0, 1], “occurrences”

Ni=— >N

fkall
1
l;‘=2j I{Xr=i}dr
m Y0

=total time spent in state i, “exposure”
pi= > H{Xg=i)
m
=initial configuration
vi= > I{Xp=i}
m
=final configuration

where the summations are over m=1,..., n, te[0, 1] and je{1,..., p}. Then defining u by
[Egn=nu, we obtain that EN*=nN, El"=nl and Ev*=nv, where N, [, and v are determined from
u and Q by formulas (1), (5) or (6), and (7). Formula (8) also holds. The statistical problem is
now to estimate Q on the basis of observation of N* and #"; i.e. given the initial configuration
and the total number of moves during [0, 1]. We assume that all other quantities, in particular
I, are not observed. We seek estimators which have good properties as n— . Note that
4" 1T=p"1T=1"1T=p, N*17=0T and that »"=u"+1N".

Before describing our new proposal, we discuss the currently available solutions to this
problem. Had 1" been observed too (the total exposure to the risks of making the various
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possible moves), statistical theory shows that the matrix of empirical occurrence-exposure
rates Qn=(diag 1")"'!N" possesses a large number of desirable properties as estimator of Q.
Conditional on g"=ng it is a maximum likelihood estimator of Q. Under conditions which
ensure that the elements of 1* become arbitrarily large at uniform rate as n—o (here we
consider a sequence of the situations described above, indexed by n=1, 2,..., in which only
the intensity matrix Q is kept fixed) Q" is asymptotically multivariate normally distributed
about Q with all off-diagonal components asymptotically independent and with asymptotic
variances which can be estimated by the corresponding elements of (diag 17)~!Q". The estima-
tor Q also possesses asymptotic optimality properties among all estimators based on complete
individual level data: i.e. where all the processes (X*:¢€[0, 1]), m=1,..., n, are observed.

In our situation, which commonly occurs in practice, this estimator is unavailable. Also the
joint distribution of (&, N") is so intractable that a maximum likelihood estimator of O based
on data (g", N") cannot be computed, neither directly nor by means of the EM-algorithm (cf.
Dempster et al., 1977), for which one would have to evaluate Ey(1"|u"=u", N*=N").
Therefore one usually takes recourse to the working approximation I'~I"=V4(g"+v") and
estimates Q by Q"=(diag i*)~!N~. This estimator is generally inconsistent. Though in most
situations its bias will be small compared to its standard deviation, and in any case the whole
Markov process set-up is itself only a “working approximation” to reality, it is felt that it is a
failure of “‘the statistical approach” that this very common situation does not yet have a nice
statistical solution.

In practice interest often centres on the transition matrix P, (as a means of predicting the
random variables 2, I{Xf=i, X7=j}) rather than on the intensity matrix Q. Within the
Markov process set-up one would generally estimate P, by substituting an estimate of Q in the
formula P;=exp (Q). The alternative “actuarial” approach to the whole problem is to aban-
don the time-homogeneous Markov process model and to elevate the working approximation
I"=Y(u"+v") or I=%(u+v) to an element of the mathematical model, denoted then
as “the linear integration hypothesis”. Various authors then derive, as an estimator of P,
Pr=(I+¥%Q")(I-%Q")~!; cf. Rogers & Ledent (1976). However there are some logical inconsis-
tencies in this derivation which are discussed in Keilman & Gill (1986). In our set-up this
estimator too will typically be inconsistent though usually not disastrously so.

Our new approach is simply to use the (very old) method of moments: equate the observed
variables #” and N" to their expected values nu and nN and solve the resulting equations in # and
Q. Thisis equivalent to solving equations (5) or (6), and (7) considered for given # and N (equal to
n~'u" and n~'N" respectively), as equations in unknowns [ and Q.

Various questions then arise:

(i) When, for given # and N, do equations (5);.(6) and (7) have a solution in / and Q?
(if) When is the solution unique?
(iii) What is a good algorithm for finding a (the) solution?
(iv) What are the statistical properties of the resulting estimators?

We can prove that there always exists a solution. If all states communicate and a further simple
condition is satisfied the solution is unique; however we can only verify this condition when
p=2. When the process is hierarchial (g;=0 for j<i) it can also be shown that there is exactly
one solution. We conjecture that there always exists exactly one solution.

Regarding question (iii), an obvious iteration method is based on cycling repeatedly through
equations (5) or (6) and (7), first computing / for given # and Q, then Q for given / and N. This
resembles the EM-algorithm in that we compute in each cycle E,(1* | g*=u"); the EM-algorithm
requires one to compute Ey(1*| #"=u", N"=N"). However, this superficial resemblence does not
guarantee any convergence properties of the iterations. It has been therefore a total surprise that
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in every example yet considered, these iterations converge quickly, independently of the starting
value, to one limiting value. No complete explanation for this has yet been found.

An alternative approach is to attempt numerical solution, in /, for given #, v and N, with v
defined by (8), of the equations (cf. (1), (3) and (7))

v=u exp {(diag )~'N}, I1T=1

which can be shown under the “full-rank” condition rank (N)=p—1 to be equivalent to
solving the fixed point equation of the previous method

1
l=J’ exp {(diag /)~'Ns} ds.
0

In all examples we tried a standard quasi-Newton method worked excellently.

For practical purposes then questions (i) to (iii) could be considered as satisfactorily
answered, though from the point of view of mathematical theory there are as many questions
as answers. All the same, as regards (iv), a satisfactory mathematical-statistical theory of the
proposed estimators can be given, in which their asymptotic properties can be derived and in
particular their asymptotic optimality (among estimators which use only the same aggregate
data) can be proved: assuming identifiability of the model.

The rest of the paper consists of two main parts, one devoted to questions (i) to (iii), the
other to question (iv), i.e. to mathematical properties of equations (1) to (8), and to statistical
properties of the estimator of Q which is defined as the solution to these equations when N, u
and v are replaced by their sample analogues. An example is also given. Before proceeding
with this, however, we must first put the results sketched above into perspective, in particular
with regard to practical demography. A Markov process model with constant intensities is
usually only considered as a rough approximation to the most realistic model. So an “exact”
statistical solution to estimation of this model is not of great practical importance. The
contribution we make here is however hopefully of methodological importance. We hope that
it clarifies some of the controversy on the “linear integration hypothesis™ by illustrating the
value of keeping elements of the probabilistic model with which we describe a phenomenon
distinct from questions of ‘“‘numerical approximations’ which might be of use when working
within the model, and also from questions of data availability (which might also make certain
approximations rather convenient); cf. Hoem & Funck Jensen (1982). Put differently, we
hope that this contribution illustrates the value of choosing a mathematical model as a
framework within which such questions can be objectively discussed. Hopefully it also illus-
trates that nice statistical solutions for more complicated models and more complicated data-
structures (e.g. the time-inhomogeneous model with piecewise linear or piecewise quadratic
intensity functions and situations with other types of aggregate data, .g. period occurrence—
exposure rates) can in principle also be obtained. In this perspective the solutions ofe.g. Land
& Schoen (1982) can be seen as a (possibly very good) working approximation to the solutions
which a generalization of the present theory would supply.

Other types of aggregate data are handled by Kalbfleisch et al., (1983) and van der Plas
(1983).

2. Solving the estimating equations

As we saw in section 1, for a Markov process with initial distribution # and intensity matrix Q
the following relations hold, where v is the final distribution or distribution at time 1, / is the
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expected length of time spent in each state during [0, 1], and the matrix N contains the expected
number of moves between each two states during [0, 1]:

v=pe? )]
1

l=f0 ue? ds (10)

10=u(e—1)=v—u (11)

N=(diag [)Q (12)

v=u+1N (13)

NT=p1"=v1T=1; NI'=Q1"=0" gy, n;(i#)), wi, vi, [i=0. (14)

For a vector, the symbols “=" and ‘> will denote componentwise = and > respectively. (By
“>"wemean = and not ="".) Note that N can also be considered as an intensity matrix and as
such, if />0, by (12) it generates the same classification of states as Q.

Our problem is now the following. Let x be an initial distribution and let N be an intensity
matrix with no redundant states, i.e. a state i with g;=n;=n;=0 for all j; let v=u+1N.
Necessarily v17=1. Does there exist an intensity matrix Q satisfying (10) and (12)? First we
note that if such a Q exists, then v must also satisfy (9), by linearity and the derivation of the
“flow equation” (13) in section 1. Since if a state is ever occupied it has positive probability of
being occupied at any particular time>0 , we must have v>0 and / (defined by (10)) satisfies
I1>0. Therefore we can write Q=(diag /)~'N. Thus the existence of Q implies v>0 and the
existence of a vector />0 such that, from (10),

1
l=f u exp {(diag /)~'Ns} ds- (15)
0

and, from (9),
v=u exp {(diag /)~'N}, 1"=1. (16)

We now show that (15) implies the existence of Q and, if rank (N)=p—1, isequivalent to (16).
Now if (15) holds define Q=(diag /)"'N and we have (10) and (12) holding trivially. On the
other hand, if (15) or (16) holds, define in either case Q=(diag /)~'N and (15) and (16) are
equivalent to

1
l=f uexp (Qs) ds a7
0

and (using the identity v=u+1N=u+I(diag [)"'N)

10=u {exp (Q)~1), I1T=1
respectively. But we saw in section 1 that in the presence of the rank condition rank (Q)=
rank (N)=p~1, (17) and (18) are equivalent.

For the rest of this section we suppose unless otherwise stated that we are given u, N and
v=u+1N satisfying rank (N)=p—1 and v>0. Does there exist /50 such that (15) or (16) holds?
Now let S denote the unit simplex {lel:/=0, /1T=1} and let $ denote its (relative) interior
{leRr:1>0,11T=1}. We shall give in this section a positive answer in the special case in which all
states communicate—i.e. N is irreducible. In Appendices II and III we obtain a completely
general (positive) result by relaxing the conditions N irreducible, rank (N)=p—1, in turn. It will
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be useful to extend the definition of the right hand sides of (15) and (16) from [€S to le S. The
case in which all states communicate is almost the only case in which a continuous extension is
possible: in fact for there to be a continuous extension we need that each state either has access to
all other states or is an absorbing state. Define functions [ and # on $" by

1
i(y= f u exp {(diag [)"'Ns} ds
0

¥(I)=u exp {(diag [)"'N}.

We extend [ and # to all of § by going back to the explicit construction of the process X in
section 1. Define a;=—n;/n; for i#j such that n,<0, a;=0otherwise. Forle S wesay —[,/n;=»
if n;=0. By an exponentially distributed random variable with mean zero or mean infinity we
mean a random variable which is identically 0 or identically + o respectively. For the following
construction we suppose that each state either has access to all others or is absorbing. For leS
we define a process X as follows. Choose an initial state, say i, according to the distribution x.
Stay there an exponentially distributed length of time with mean —/;/n;, then jump to state j
with probability a;, stay there an exponentially distributed length of time with mean —/;/n;,
jump to state k with probability ay, .. .. [f some [;’s are zero (all cannot be zero) the condition
on the state space ensures that if one arrives in a state with —/,/n;=0, then after an almost
surely finite number of instantaneous jumps one arrives in a state with —/,/n;>0 and stays in
this state a positive length of time. It can be verified that this procedure does define a process X
by X,=state at time ¢+ for all ¢, almost surely; see Appendix II.

For this new process we can compute the expected length of time spent in each state during
[0, 1] and the final distribution over states: we denote these quantities by [(Iy and #(1). It can
be shown (see Appendix II) that this definition extends+ and # from S° to S in a continuous
way. For i such that —/,/n,;=0 we have [(I);=0, #(/)=0. Clearly ¥, I'map Sinto Sand $’into S°.
Note that if not every state had access to all other states or was absorbing, then there would
exist a proper subset of two or more states which was absorbing and communicating. If /;=0 for
all states in this class, then on arrival in this class one would immediately and instantaneously
make an infinite number of jumps within the class, so the process X cannot be defined.
Moreover, for [;>0, as [—0 for all states in this class, #(/); and f(l),— do not converge.

We now make the even stronger assumption that all states communicate, and prove under
this assumption that the equation #(/)=v has a solution in 5. Note that under this assumption,
[=0&7(1)=0, and recall that v,>0 for all i. We make use of a dual form of the lemma, from
fixed-point theory, of Knaster, Kuratowski & Mazurkiewicz (1929) (the K-K-M lemma) which
can also be found in Ch. 8, §2 of Berge (1959), in Todd (1976) or in van der Laan (1980). The
dual version is due to Freidenfelds (1974, theorem 1’). For this we define the faces S, of S by
S;={leS:1=0}.

Lemma (Knaster, Kuratowski & Mazurkiewicz; Freidenfelds)
Let Cy,..., C, be closed subsets of S such that

p
S= U C,',
1

S,cC; for all i. Then

P

() G 1 is non-empty.
1
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Fig. 1. The K-K-M lemma, p=3.

For our application we define C;={leS: #({);<v;}. Since #:5—S is continuous, C;is closed.
Since #(/), veS, for all [ there exists i such that #(I),<v;; i.e.

P
S= U Ci'
1
Finally if [;=0, then #(/);=0<v,,so leC;. So C,,.. .., C, satisfy the conditions of the lemma and
p
ne
1
is non-empty. But for
P
le ﬂ c,
I

P(l);=v; for all i, hence ¥(/)=v.

In Appendices II and III we extend this result to prove finally: for any initial distribution
and intensity matrix N with v=4+1N>0, there exists /e S" satisfying (15).

We now use the methods of degree theory (cf. Ortega & Rheinboldt (1970) Chapter 6) to
prove the following result under the same assumptions as above (all states communicate,
v>0). Define the matrix J=J(u, Q) by

Jij:hﬁt\Q(L [{X,=i} dlI{X1=J'})="’-‘%.Q(li"j) (19)

Then we show that if J=J(I)=J(u, (diag /)" N) is non-singular for all /eS", then the equation
¥(I)=v has a unique solution /e S°.

First we note that —(diag /)~'JQ is the Jacobian matrix of the transformation v: S'clr— {7,
For, denoting by A,. the ith row of the matrix A, we have

W ge? !
—=ﬂ—€__ﬂf e 92 009 g5

81, ali 0 al,-
) 0
[ el [0 o
0 i 0
1! 0
li 0 0

0

1
= ;— J‘ ,Uer {eQ(I’S)Q}i' ds.
i JO 0
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The second equality can be verified by substituting the power series representation for 2, e
and 2!, So

A 1
21"j'=__J’ (ue®); [e@'=9Q]; ds=—~(JQ),
al; li Jo l;
Now define

p-1
S*={xeh‘1?\"" x =0V, 2 x,-sl}.

1

Define 7;: $*—S by
p-1
T(x)=(X1,. .., Xioq, 1_2 Xjy Xise v xp~|)-
1

Note that z;! exists and z7!(/)=(l;,..., li-y, lis1,...1,). We can now define mappings
i) §*8* by #h=g7leper, (i.e. we drop the ith component of / and the jth of #(/)). Any
two such mappings are related by #*/)=r; leg, o #mnor ~log, where r,!°r; and 7; '°7, are non-
singular affine maps from $* to $*. Soif the Jacobian matrix of any 7/ is singular, they all are.

Now the Jacobian of #¢/ is obtained from the Jacobian of # by subtracting the ith row from
all the other rows and then deleting the ith row and jth column (if,,=1-/,—...—[,_,, thenfor/,
j<p, a¥e-P /8l=0v;/al;—V;/al,). So if J is non-singular and N has rank p—1, then for /e S°,
—(diag [)"'JQ has rank p—1. At least one row is linearly dependent on the others so
subtracting such a row from all other rows and then deleting it preserves the rank. Now one
column is linearly dependent on the others and may also be deleted without reducing the rank.
So if J is non-singular, then for some i, j, #“/ has non-singular Jacobian. Hence all #¢-/) have
non-singular Jacobian.

Next we note that the determinant of the Jacobian of #(*/) is a continuous function of /e S°.
So if the Jacobian is non-singular everywhere, its determinant has the same sign everywhere.
Consequently if J is non-singular on S, then the determinant of the Jacobian of #(/) is non-
zero and has the same sign on E=(S5*)°. Pick any (i, j) and let y=7;!(v). We now consider
solutions of the equation #/(x)=y, xeS*. Under the condition >0 for all i there
are no solutions on the boundary of S§*. Define H:5*X[0,1]-S* by
H(x, )y=(1-0)z;te;(x)+t4/)(x). Note that ye E=(5*)°. Now the equation H(x, f)=y also
has no solutions on 95 *x [0, 1] since forxedS*, H(x, 1)€dS*. By continuity and compactness
there also exist no solutions in

p-1
{xeS* :x; <6 forsomeior 2 x,?l—é}X[O, 1]

1

for some >0, where of course pd<1. Let
p-1
C={xeS* :x;>0Vi and E x,«<1—6}.
1

We now have the following facts. The set Ec®P~! is open and bounded. The function
1‘/(‘?/1: E—E is continuously differentiable on E. The set C is also open, CcE and
H:Cx[0, 1]—E defined as above is such that H(x, £)=y has no solution on dCX[0, 1]. By the
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Homotopy invariance theorem (cf. Ortega & Rheinboldt (1970), §6.2.2, p. 156) we have
deg {H(-, 1), C, y}isconstant for 7€[0, 1]. Now H(-, 0)=z;'er;and H(-, 1)=¥"). Moreover
for a continously differentiable function F: E—i~! with Jacobian matrix F' which is non-
singular at all solutions in C of F(x)=y and which has no solutions on §C,

deg (F, C, y)= > signdet F'(x)
xeC:F(x)=y
Also yeCso 7, 'o7)(x)=y hasa unique solutionand deg {H(:, 1), C,y}==1foralls. Therefore
#6)(x)=y also has exactly one solution in C, which is what we needed to prove.
We do not know whether the condition on J holds in any generality, and can only use this
result to prove uniqueness of a solution in the case p=2(!). In this case, with g;=—¢,,>0 and
g»=—q»>0, we have

i_+_g_l_ e-(ql+q:)l ._i____ql_ e—(ql+q:)t
qi+q: qitqs Qit+q:  qitq:

ed'=
R eyt 4 +——q2 e~ldy+ay)
qQitq: itq: qitq: 4:1t4q2

Now letting U denote a uniformly distributed random variable on the interval [0, 1] which is
independent of the process X, we see that the matrix J contains as elements the probabilities
I(Xy=i,X,=/). In the case p=2, singularity of J is equivalent to independence of the random
variables Xy, and X,. Now from the expression for e we see that “(X,=1|X,=1) is a strictly
increasing function of ue[0, 1] and moreover this quantity is strictly larger than *(X,=1) forall
u>0 (whatever 4). Hence ?(X;=1|Xy=1)>*(X,=1) and Xy and X are not independent.

In one other case in which we can prove uniqueness of the solution by other means, J is also
non-singular, though the case is not covered by the assumption above. This is the case of a
hierarchical process, when (after a relabelling of states) we have that i does not have access to j
if i>j. So N has under-diagonal part identically zero. In this case J also has under-diagonal
zero, and positive elements on the diagonal if all n; (except for i=p) are non-zero. In the
equation #(I),=v,only /,..., [;enter. Suppose /,, ..., [,.,>0 are such that #(I),=v, for j<i. As
l; varies from 0 up to 1—(L+. . .+1,), #(I); strictly increases from O up to some value. So
either there is a unique value of /; with #(/),=v; or none at all. By an induction argument there is
either one solution to #(/)=v or none. By the existence result, there is exactly one solution.
These are the only presently available results on uniqueness. (Except for the following: if there
is a unique solution, with non-singular J, at (&, N)= (1, Ny), then there is a unique solutionina
neighbourhood of (4, Ny).) Another fixed point theorem is used by Johansen (1973, proposi-
tion 2.3) in a rather similar context: the embedding problem for stochastic matrices.

On the other major problem in this context, convergence of the iterations /k+!=[{/®)}
k=1,2, . .. (starting from some initial guess /(V)) results are very meagre. Denoting by 9//4!
the matrix with (i, j)th element 8[/dl,, it can be shown quite easily that
dl/al=—(diag 1)~'(J—diag /). Since J(/)1"=1(!)", at a fixed point 8//4/ equals the identity
matrix minus a stochastic matrix. If it could be shown that the spectral radius of 8//a/ is less
than 1 at a fixed-point, then by the Ostrowski theorem (Ortega & Rheinboldt (1970) §10.1.3,
p. 300) we would know that the iterations converge in a neighbourhood of a fixed-point. In the
case p=2 (I am indebted to the referee for the following observations), we have just shown
that this stochastic matrix has a positive determinant. Its eigenvalues are therefore 1 and
A€[0, 1] (real). Hence the spectral radius of 8//a/ is 1-A<1 and we are guaranteed local
convergence of the iterations. However, it is not clear whether or not 8//3/ has this property in
general. Note however that if #>0 under and the elements of N are very small in absolute
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value, then vis close to 4 and we expect any solution / to be close to both. For/not close to 4, J
is close to diag /and 3//4! is therefore close to 0. So we expect local convergence in this case.
Also since J is then non-singular for most /, we expect uniqueness to hold too.

3. Statistical properties of the solution of the estimating equations

In this section we will consider large sample resultsin the i.i.d. case in which the initial states of
the component processes X{', m=1,..., n, are independent and identically distributed with
distribution #, and hence the whole processes X™, m=1,..., n, are i.i.d. This makes life easy,
though one would really be more interested in conditional large sample results, conditional on
pr=u", for some arbitrary sequence of realized initial distributions x*, n=1, 2, . . ..

So we work in the i.i.d. case and suppose the processes are generated by a fixed y=g, and
Q=Q, such that /=1,e S° and the matrix J=J, defined by (19) is non-singular. This implies as
was shown in section 2 that the Jacobian matrix at (&, N,) for the mapping (cf. (16)).

@(ls 11, N)=u exp {(diag [)"'N}—(u+1N), [1T=1,

considered as a function from (I, ..., [,,) , to (¢y,..., @,-1) is non-singular at the solution /=1,
of (16) defined by (10). Of course there may be other solutions of (16), i.e. of ¢(; iy, Ny)=0;
an (unverifiable) condition for uniqueness was also given in section 2. Thus by the implicit
function theorem (see e.g. Ortega & Rheinboldt (1970) §5.2.4) and speaking somewhat
informally there exists a neighbourhood of (uy,, N,) and a continuously differenti-
able function /* defined on the neighbourhood such that I=/* (¢, N), is a solution of (16),
loy=1*(uy, Ny), and moreover, the derivative of /* with respect to (¢, N) at («, Ny) is given by
—(a@/al) "' {d¢p/a(u, N)} w,.ny- (To make this formally correct, we must first delete super-
fluous elements of 4, N and [ — e.g. the diagonal of N, the last element of # and /, and any
“structural zeros’ in N.)

All this gives immediately by the central limit theorem and the d-method that, if we define
fr=0* (n='@", n='N") for (n~'", n~'N") in the neighbourhood of («,, N,) (the probability that
this is the case converges to 1 as n— ), then n'?(i"—1,) is asymptotically multivariate normally
distributed with mean zero and with a covariance matrix which can be determined from the
derivative of /* and the covariance matrix of n"2{(n~'u", n~'N")—(uy, N,)}. Defining
Qr=(diag I")"!(n"'N"), the same holds for n'2(Q"—Q,) by a further application of the
d-method. In Gill (1984) the asymptotic distribution of n'2{(n~'u", n='N")—(uy, Ny)} is
described. See also Funck Jensen (1982a) and her references. So in principle the asymptotic
covariance matrix of 7/2(Q"—Q,) is determined and can be consistently estimated by substitut-
ing n-'" and Q" for u,, Q. To do this in practice will require availability of efficient matrix
exponentiation and numerical integration procedures; see especially Moler & van Loan
(1978). (We must also assume that the solution at (#,, N,) is unique. The probability then tends
to one that the solution at (n~'u", n~'N") is also unique, so that i* is the estimator we actually
compute.)

We now discuss asymptotic optimality of this estimator at a similar informal level. For
notational convenience we shall switch over to the following general setup and first repeat the
above arguments. Suppose X, X,,... are i.i.d. ?-valued random vectors with distribution
depending on a single parameter fel. Suppose we only observe

)z"=n"§n: X,
i1

Define 1 ()=l (X)) and 0*(8)="ar, (X;) (a pX p matrix) which we both suppose to exist. We
shall need that u(-) and o*(-) are continuous, and in fact that #(-) is 1-1 and differentiable with
a differentiable inverse (the implicit function theorem can sometimes be used to verify this
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condition). It is then sensible to consider the method of moments estimator é, defined by
X,=u(8,). Since by the central limit theorem

(X, —u(8)) 2% N{0, 6*()},
we have by the ¢-method
n2(6,—-0Y2%> N[0, {(au/36)~"}T0%(8) (8/36)7'].

(Here ) means "“converges in distribution under £'.)

In fact 8, is the only consistent estimator of & which is a continuous function of X, only (and
does not e.g. also depend on sample size ). Usually the maximum likelihood estimator of &
based on data X* will also depend on n: it must be asymptotically equivalent to é, if it is
asymptotically optimal too.

To discuss asymptotic optimality, let us for simplicity consider the case 4 (6#)=6=u, p=1. In
the general case exactly the same arguments go through. So we have in [+! i.i.d. random
variables X; with

n2(X,—p Y24 N{0, o%(u)}.

According to LeCam’s (1960) theory of local asymptotic normality (cf. also LeCam (1972) and
Hajek (1970, 1972), X, will have various nice asymptotic local efficiency properties as estima-
tor of u with data X, if the log likelihood ratio for two values of  of order n~'2 apart, based on
observation of X,, becomes like the same log likelihood ratio based on the asymptotic
distribution of X,. To state this more precisely, let p, (x; ) denote the density, with respect to
some fixed o-additive measure, of the distribution of )_(,, under u#. Then we require for
asymptotic optimality that for any number 4 and any sequence h,~h as n—, and any uy,

X - -12 5 1% X
log {p X fiytn h")}mﬂ) N {—l PEY RSV }
pn(xn; 1“0) 20 (,“0) 0‘“(/10)

(20)

To motivate (20), let us consider equivalently for fixed x4, the log likelihood ratio for the same
pair of parameter values based on data Y,,=n“2()_(,,—,u0). Under p,=uy+n""?h,, Y, is approx-
imately N{h,, o%u,)} or approximately N{h, 0*(u,)} distributed, while under ug, Y, is
approximately N{0, 0%(u,)} distributed. Writing o3 for o*(u,), we would therefore expect the
log likelihood ratio at the left hand side of (20) to be approximately equal to

(2703) 72 exp {—(Y,—h)*/203}] hY, H* 2wy ( h? hZ)
_hY, n

(203)1% exp (~Y2/203) o 203 T2 a3)

log

So (20) is not such a surprising condition. Looking at the preceding sketch of a derivation of
(20), we see that we need continuity of 0*(x) as function of 4 and moreover that a local central
limit theorem should hold for X,, uniformly in i close to u; i.e. we must be able to approximate
the density of n~"%(X,—) by the appropriate normal density, uniformly in 4, uniformly on
arbitrarily large portions of the real line. Such uniform local central limit theorems do not hold
in general, however they are available in our situation in which the Xs are lattice random

variables and satisfy a uniformly bounded 2+ moment condition; see e.g. Petrov (1975) Ch.
7.

4. An example

We consider here a small part of the data-set given by Schoen & Nelson (1974) which has
recently been used by Nour & Suchindran (1984) to illustrate the occasional breakdown of the
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“actuarial formula” P=(I+%Q)(I-%Q)"". In fact this example, based largely on the actual
marital status patterns for the whole US female population 1960, age group 20-24 (incorrectly
described by Nour & Suchindran, 1984) is not a real data-set of the type we are interested in:
however, it is a realistic data-set, describing a hypothetical cohort of 100 000 individuals who
experience at each age of their life the same risks of marriage, divorce, etc., as experienced by
the US female population in 1960. Note that the time interval [0, 1] of the previous sections
now represents the age interval from the 20th to the 25th birthday of the hypothetical cohort.
(In any case, our approach gives a means of interpolating within such life-tables, however they
have been constructed.) The actual figures are summarized in Table 1; they are obtained from
the multi-state life tables of Schoen & Nelson (1974). Some rounding errors have been
resolved arbitrarily. The underlying model is described by Fig. 2. The reader is invited to draw
his own conclusions on the relative risks of death, (re)marriage, etc., in the various states from
the raw data 4" and N”, n=100000, before studying the various estimates of the transition
matrix P in Table 2.

We present three different estimates of the transition matrix P, writing u=n"'u", etc.,
namely the “actuarial-solution” P=(I+%0)(I-/20)"" where Q=(diag [)"'N and I=
Ya(u+v); the “‘approximate statistical solution” P=e? ; and the “exact statistical solution”
P=e¥ where O=(diag /)~'N and [is the solution (as far as we know unique, but this is not
proven) of the equations v=ge?, [17=1. We also display 7 and / (or rather I"=nT, [*=nl)

widowed \

single > married dead

diyorced /

K

>

Fig. 2. Model (US females 1960 age 20-24 (t); n=100000).

Table 1. Data
s m w \ d
Initial distribution
54177 41955 59 544 3265 un

Moves

s -40176 40043 0 0 133 Nn

m 0 —6537 373 5971 193

w 0 146 —148 0 2

v 0 4009 0 -4021 12

d 0 0 0 0 0

Final distribution 14001 79616 284 2494 3605 vn
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Table 2. Solutions.

$ m w v d

Approximate 34089 60785.5 171.5 1519.0 3435 In
exposures
Exact 29691.2 65057.7 170.7 1641.3 3439.1 n
exposures
Actuarial solution

s 0.2584 0.7211 0.0015 0.0152 0.0037 P

m 0 0.9513 0.0042 0.0412 0.0033

w 0 0.5802 0.3984 0.0123 0.0091

v 0 1.1082 0.0024 —0.1158 0.0053

d 0 0 0 0 1
Approximate statistical
solution

s 0.3077  0.6687  0.0018  0.0181 0.0035 P

m 0 0.9594 0.0040 0.0333 0.0033

w 0 0.5532 0.4234 0.0146 0.0089

v 0 0.8948 0.0028 0.0975 0.0049

d 0 0 0 0 1
Exact statistical
solution

s 0.2584 0.7166 0.0019 0.0193 0.0038 P

m 0 0.9601 0.0037 0.0331 0.0030

w 0 0.5553 0.4216 0.0143 0.0083

v 0 0.8810 0.0026 0.1118 0.0046

d 0 0 0 0 1

S m w v d

from which O and Q can be easily constructed. (Many authors give the formula P=(I-
11 Q) 1(I+0); fortunately the members of the product commute.)

Note that both P and P fit the data exactly (P does not) in the sense that u P=y¢ P=v. This
dataset illustrates the anomaly that P is not necessarily a stochastic matrix: it can include
estimated probabilities smaller than zero or larger than one. A sufficient condition for P to be
well-behaved is §,=—2 for each i; this condition fails in this case. The formula for P was
derived by Rogers & Ledent (1976) under the condition (at a superficial reading of their
paper) that the events of each type (each type of move) occur uniformly distributed in time
over the time-interval {0, 1]. However, at a closer reading they need two strong assumptions,
whose mutual consistency is not at all evident: for each type of move (from i to j, i%j), for each
initial state subpopulation, moves occur uniformly distributed in time and the occurrence-
exposure rate (computed over the whole time interval) does not depend on the initial state.
Surprisingly it can be shown that these assumptions are mutually consistent and consistent
with a particular ¢ and N if and only if Pis a stochastic matrix.

Finally we remark that, since this is only hypothetical data, an estimate of the covariance
structure of the “exact’” statistical estimators Q" or P"is not very meaningful. In fact we have
not yet gone to the trouble of deriving explicitly the formulas for this mentioned in section 3,
which will be extremely complicated. A useful practical solution is to use for Q" the estimated
covariance structure for the occurrence—exposure rates applicable when the exposures I' are
observed too. This gives a lower bound to the asymptotic covariance matrix of the estimator
actually used; i.e. our recommendation is to use the off-diagonal elements of (diag i")~2N"asa
lower bound to, and rough estimate of, the variances of the corresponding elements of Q.
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Appendix I

Rank (Q:17)=p&Srank (Q)=p—1& there exists a state to which all states have access.

References here are to Berman & Plemmons (1979) Chapter 6 ““M-matrices”, also some of
the notation is theirs.

Suppose there exists a state to which all states have access. Consider the matrix A obtained
by deleting the row and column from —Q corresponding to the state i, in question. Then we
have Ae Z®-D*e-1 (cf, definition on page 132). Taking x to be the column vector of p—1 1’s,
we have that x satisfies the conditions L, of theorem 2.3 (pp. 134, 136). Therefore A is a non-
singular M-matrix and in particular rank (4)=p—1 so rank (Q)=p—1 too. We show that no
column vector x exists with (—=Q)x=1T. Let I be the (non-empty) class of states which
communicate with iy. So (after a relabelling of states) we can write

F G
Q_[O Ql]

where Q; is the intensity matrix for the states I. Also Q, is irreducible. Now, in obvious
notation, (—Q)x=1T=(—Q,)x,=1]. So it suffices to consider the case of an irreducible
intensity matrix, which we will take to be Q itself. Since (—Q)eZP* and (—Q) 1T=0T, by
exercise 4.14 (p. 155) we have that —Q is a singular M-matrix of rank p—1 with “property C”".
But then by theorem 4.16 (5) (p.156), (—Q)x=0T = (~Q)x=0T. So (—Q)x=1Tis impossible.

Conversely, suppose there does not exist a state to which all other states have access. Then
Q contains at least two disjoint absorbing subsets of states; i.e. we can write (after a relabelling
of states)

Q=

o oy
SRl
0 °Q

J

Now both Q, and Q, are singular (row sums are zero) so rank (Q)<p-2. Therefore rank
(Q:1M=<p-1.

More generally, suppose there exist » and no more than r disjoint absorbing subsets of
states. Then we can write

E F G
0 Qw0
o=10 0 o

* on

where E has full rank (apply to — E the same argument as was applied to 4 above) and each Q¥
has rank one less than its dimension. So rank (Q)=p—r.

Appendix II. Existence of a solution in the case rank (N)=p—1, v>0

We are given ueR? (row vector), Ne[RP*?, and v=u+1N satisfying =0, u17=1, N1T=0QT,
n;=0 for all i#j, rank (N)=p—1. Recall that S={leRr: {[=0, [1T=1}; S'={lelr:[>0,
I1T=1}.

We show that there exists [eS® such that /(I)=I or equivalently (thanks to the rank
condition) #(!)=v. We build step by step on the result and method of proof given in section 2.

9
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Case 1

If all states communicate we know 3/e S$%s.t.
I=1=I(; 1, N)
v=v(l)=v(; u, N)

Case 2

Next suppose all states but one (the pth say) communicate and have access to the pth,
absorbing state. Choose 8"W—0 as n—, ¥,>35" >0, and define x"”=u and

0
N®=N+
6" 0---0-o"

The problem («™, N™) has 30 and all states communicating so there exists a solution
["e $°. From this sequence we can select a subsequence (which we shall take to be (/™) itself)
along which [®—[eS and a"W=I{"/5"—ae(0, »]. We shall first show that

vev=v(I®; 4", N®)—v(l, 4, N)
and
Ll =1(1™; §, NI 2, N)

(only the right hand convergences need to be verified; recall that #(-; #, N) and /(-; u, N) are
defined on S since for this problem every state has access to all other states or is absorbing).
Obviously if we knew leS9 or that I(-; -, -yand #(-; -, -) were continuous in all three arguments
jointly at a point with /€ 9.S we would be ready. However, neither of these hypotheses is a priori
true. Now define a process X{"=state at time ¢+, t€(0, ®) by constructing:

—a discrete time Markov chain on {1,..., p} with initial distribution ¢ and with transition
probabilities

ni//("”ii) i#j, i<p
1 (4=, 1)

0 otherwise;

—independently, for each i, an infinite sequence of independent exponentially distributed
random variables with parameter

('—n,',') l<p
1 i=p;

we then obtain X{" as the process whose initial state and jumps are given by the Markov chain
and whose jump times, in each state i, are given by

i i<p
a("):l‘(vn)/éfn) l=P

times the random variables in the ith sequence of exponentially distributed r.v.s, taken in
sequence.

For each n this results in a homogeneous Markov process with parameters (4, Q®)=
{u, (diag I™)~IN®}  expected exposures /) and expected occurrences N,
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We define

X(==lim lim X%,
hl0 n—x

which we claim exists for all 7€[0, 1] almost surely. After checking that, we check that
{X\™:1€[0, 1]} is the process (X,:7€[0, 1]) by means of which I(/; #, N) and #(/; #, N) are
defined; i.e. homogeneous Markov with parameter (u, Q)={u, (diag I)"'N) where /€S is
allowed. Then finally we check /edS is impossible.

Note first that since all states communicate, almost surely the Markov chain visits a state i
with ;>0 infinitely often. Suppose first there exists such a state with i<p. Since the partial
sums of the ith sequence of exponentials converge almost surely to infinity, it follows that the
processes X, n< are indeed well defined. If /=0 for all i<p then [,=1and o= and again
the processes are well defined, in particular for n=o. So we have by almost sure convergence
of the bounded random variables

1
0

and

vO=I{X{"=j}  n<w
that

I=E{=)}
and

v=[E{y)}.

Now if @= the processes X™) and X, t[0, 1], are the same (from which follows the required
result I=1(l; u, N)). However if a<o there will be (for X!™)) with positive probability a
positive number of jumps in the time interval [0, 1] from state p back to state 1. Now this
number of jumps for the process X ™ converges almost surely to the same number for X{™. Its
expectation for each n< is §"—0 as n— . Hence the number converges in probability to
zero as n—; hence the number of jumps for X§°°> is almost surely zero. Thus we do indeed
have a=« and hence

I=I(; u, N)
v=v(l; u, N).

Finally we show that /€ S°. Suppose first that ;=0 for some i<p. Then we would have #()=0,a
contradiction. On the other hand since >0 we must have / (1),>0, so I,=0 is impossible too.

We have now finished with the case that all states but one communicate and the exceptional
state is absorbing and accessible from the others.

Case 3

Consider next the case in which {1,..., p} is partitioned into non-empty subsets & and %
where % is a communicating class of at least two states; and no state in %] has access to a state
in % . We make no use of the conditions rank (N)=p—1 till the very last step.

Let M* be the p X (r+1) matrix which collapses all states in % to a single state (here ris the
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number of states in %); so if % consists of the states 1,.., .r we have
1 if i=j or i>r, j=r+1
m.= .
710 otherwise

We also denote by a * all quantities for the collapsed process; e.g. #*=uM*, N*=M*TNM*,
etc. Suppose /*>0* is a solution for the collapsed process; i.e.

1*=[*(I*; u*, N*)
v¥=i*(I*; u*, N*).

Consider the problem of finding /€ S such that
IM*=1*;
v(l; u, N)=v.

Note that [([; £, N) and #(/; , N) are defined for all /€ S (not just 8% with /M *=1[* by the same
construction as before since /*>0* implies that for each /e S there exists ie % such that /;>0 ;
therefore once in %; one always reaches (with probability one) infinitely often a state with [;>0.
Moreover, [ and # are continuous functions of /€S, [* fixed.

Now we apply the K-K-M lemma just as before to the lower dimensional simplex {/€S,
IM*=I* fixed}. Since {#(/)} *=v* only depends on / through /*, exactly the same argument
goes through, giving an /eS? such that #(/; 4, N)=v. Under the full rank condition rank
(N)=p—1 this ! also satisfies I(I; u, N)=I

Case 4

Next we consider the case {1,..., p}=%U&U{p}, a partition of the state space into three
classes, such that % and % are as before (only %] has at least one state, not at least two states),
state p is absorbing and accessible from & (otherwise we would have rank N<p—1). Now we
combine the proofs of the two previous cases to show that: let [*>0* satisfy

l*zz‘*(l*;ﬂ*’ N*)
V*=A*(1*;,u*, N*)

where * denotes the problem with all states in %} U{p} collapsed to a single state. Then there
exists />0 (with /M *=[*) such that

I=I(l; u, N)
v=9(l; u, N)

Case 5

Finally we suppose that we can partition the state space into communicating classes %, ¢, ...,
&, such that each %; does not have access to %;, j<i, but does have access to some ¥, j>i
(except that #; is absorbing). Under the rank condition rank (N)=p—1 such a decomposition

is always possible (see e.g. Funck Jensen, 1982b). First we solve for &, with 4j,..., ¥,
collapsed into a single state (using case 1if r=0; case 2 if r>0); then (supposing now r =1 and,
if r=1, % has more than one state) we solve for ¥ with %, already solved and ¥%;,..., %,

collapsed into a single state (using case 3 if r=1 and case 4 if r>1); etc.
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Appendix ITI. Existence of a solution in the general case v>0

We now extend the previous result to the case rank (N)<p-—1, retaining the assumption v>0.
We note that rank (Q)=p—r (for an intensity matrix Q) if and only if there exist r, and not
more than r, disjoint absorbing subsets of states; 1<<r<p. Clearly many of the previous
arguments go through. The real problem arises at an early stage of the argument: we no longer
have for /e §° the equivalence of

I=I(; 4, N)
with
v=¥(l; 1, N).

In particular if there are several absorbing states then /(/) and #(/) do not vary with the values
of [, i an absorbing state. We can only show that /=/[(/) implies v=7(I), not the reverse
implication. (This result is almost trivial: if /e S satisfies [=/(/; #, N) then we know that x
=k, o), N=E,, o(N) where Q=(diag [)"'N. Hence by linearity and the fact v=u+1 N we
find

v=E, o+ IN)=E, o(1)=7(1).)

We shall prove the following theorem:

Theorem
For any u, N with v=u+1N>0 there exists 1€ S° such that I=[(I; u, N). Any such | also satisfies
v=v(l; u, N).

First we state and prove a lemma which shows how /=[E, (1) may be computed for general
Q (i.e. not necessarily of rank p—1) by solving linear equations, analogously to the result (for
rank (Q)=p—1) “I=E, o(l) if and only if /Q=u(e?-I)=v—pu, [17=1".

Lemma

Letu and Q be a given initial distribution and intensity matrix respectively. Let v=pe?. Suppose
rank (Q)=p—r so there exist r disjoint absorbing subsets of states, not more, I<r<p. Let Q* be
the intensity matrix obtained by collapsing each of these subsets to single states, and Q™ * be that
obtained when these states are further collapsed to one single state. Define u*, u**, etc.
analogously. Let M*, M** be the matrices which perform these successive collapsing operations
(so u*=puM*, u**=pu*M**, etc.). Then I=E, (1) iff

Step I{. l**Q**=V**_ﬂ**, l**l**T=1 (deﬁnes l**)
Step 2: m**Q**=**—u** m**1**T=14 (defines m** given I**)

*=u*+m*Q* where m* is any solution of m**=m*M** (defines |* given m**)
Step 3: 1Q=v—u (defines | given I*).
Proof of the lemma. Step 1: Since rank (Q**)=dim (Q**)—1 this is already proved (for

the ** process all states have access to a single state).
Step 2: Let

m,=E,,,Q(J’:0 L;O I{X,=t} ds dt):
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sO

1 t
m=j ¢, ds dt
=0 Js=0

where (¢,),=2, o(X,=i)=(ue%).
We have

1 t
mlt= f j ds dt=%
=0 s=0

1 t
mQ=J j wue?Q ds d
=0 Js=0

and

1
=J (1-s)pe®Q ds

=0

1

= {(1-s)ueH + f ue ds
0

=—pu+i=l-pu.
In particular this general result applies to the two collapsed processes X7 and X * yielding
m*Q*=l*—-,u*, m*1*¥T=1s
and
m**Q**=l**_ﬂ** m** 1**'[’___..1/2'

Since rank (Q**:1**T)=dim (Q**) the second pair of equations here defines m™** uniquely
given [** and u**. Next we note that each row of Q* corresponding to one of the r absorbing
states of the process is identically zero, so m* Q * only depends on ™ via the components it has
in common with m** . So given m**, we can compute [*=u*+m*Q*.

Step 3: Write [=(/° ['...]") partitioned according to the r absorbing subsets of states
(superscript 1,..., r) and the remaining states (superscript 0). Partition Q, etc., similarly.
Each of the absorbing subsets of states does not contain two or more disjoint absorbing sub-
subsets or equivalently each state in the subset has access to one particular state in the subset.
Since [* is given, we already know the elements of I° and the value of I'1/", i=1,...r. Now

QOO QOl e . Q()r
0 u 0
0= e,
0 0 QT
So from the equation /Q=v—u we obtain, for i=1,...,r,
QUi [iQii=yi—yi,

Since ° and /1T is given, and
rank (Q%:1M)=dim (Q%),

we can solve for I\
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Proof of the theorem. Given rank (N)=p—r partition the state space {1,..., p} into %,
#,..., € where each &, i=1, is a communicating, absorbing subset of states (%; may be
empty). From any state in % one has access to some state in

U

1

Denote by a * and a * * the systems obtained when each #; is collapsed into an absorbing state,
and when these absorbing states are further collapsed into a single absorbing state, respec-
tively. Since rank (N**)=dim (N**)—1 and v**>0** there exists a solution /**>0** to the
** problem. For the * problem we can now compute Q* =(diag /*)~'N* since each row of N*
corresponding to one of the absorbing states (for which the corresponding component of /* is
unknown) is zero. For each i separately for which #; consists of two or more states, we now
apply the result of “Case 3, Appendix II, taking, for %, and %, there, %, together with the
collapsed ), j#i, and &, respectively. This shows the existence of an />0 for this new problem.
Now we can piece together the r solutions to obtain a “solution’’ [ to the whole problem; this is
a solution in the sense that it satisfies #(I; #, N)=v. Define Q=(diag /)~'N. We now verify that
I satisfies the conditions of steps 1, 2 and 3 of the previous lemma. Note to begin with that we
do have v=ge?, as required by the lemma. Now [** and [* do satisfy the relations in “step 1”
and ‘“‘step 27 of the lemma, by the very construction of [ From the equality
uef=v=u+1N=u+IQ we obtain the condition of “step 3", /Q=v—u, and the result is proved.
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